Our panel of 91 professional philosophers has responded to

89
 questions about 
Law
31
 questions about 
Space
2
 questions about 
Culture
75
 questions about 
Perception
154
 questions about 
Sex
69
 questions about 
Business
392
 questions about 
Religion
117
 questions about 
Children
58
 questions about 
Punishment
110
 questions about 
Biology
67
 questions about 
Feminism
134
 questions about 
Love
151
 questions about 
Existence
284
 questions about 
Mind
24
 questions about 
Suicide
68
 questions about 
Happiness
170
 questions about 
Freedom
5
 questions about 
Euthanasia
43
 questions about 
Color
218
 questions about 
Education
124
 questions about 
Profession
70
 questions about 
Truth
1280
 questions about 
Ethics
80
 questions about 
Death
81
 questions about 
Identity
105
 questions about 
Art
208
 questions about 
Science
88
 questions about 
Physics
54
 questions about 
Medicine
36
 questions about 
Literature
34
 questions about 
Music
244
 questions about 
Justice
96
 questions about 
Time
39
 questions about 
Race
282
 questions about 
Knowledge
574
 questions about 
Philosophy
58
 questions about 
Abortion
374
 questions about 
Logic
110
 questions about 
Animals
27
 questions about 
Gender
51
 questions about 
War
2
 questions about 
Action
23
 questions about 
History
287
 questions about 
Language
77
 questions about 
Emotion
32
 questions about 
Sport
75
 questions about 
Beauty
4
 questions about 
Economics
221
 questions about 
Value

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).